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Abstract This is the third and therefore the final part of a trilogy on probabilistic
evolution approach. The work presented here focuses on the probabilistic evolution
determination for the state variables of a many particle system from classical mechani-
cal point of view. Probabilistic evolution involves the expected value evolutions for all
natural number Kronecker powers of the state variables, positions and momenta. We
use the phase space distribution of the Liouville equation perspective to construct the
expected values of the state variables’ Kronecker powers to define unknown temporal
functions. The infinite number homogeneous linear ODEs with an infinite constant
coefficient matrix are constructed by following the same steps as in the previous two
works on quantum mechanics. The only difference is in the definitions of the expected
values here. We also focus on a system of many harmonic oscillators to illustrate the
block triangularity.

Keywords Probabilistic evolution · Expected value dynamics · Evolution matrix ·
Phase space distribution · Elastic spring forces

1 Introduction

The classical dynamical equations of motion can be constructed by using various
formalisms like Hamilton’s where the equations are derived from a function of state
variables, called “Hamiltonian”, which somehow corresponds to the total energy of
the system under consideration. If we consider a classical system composed of some
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34469 Istanbul, Turkey
e-mail: metin.demiralp@gmail.com

B. Tunga
e-mail: tungab@itu.edu.tr

123



J Math Chem (2013) 51:1198–1210 1199

number of particles such that the degree of freedom is at most three times the number
of the particles and this degree may decrease if certain number of bounds exist amongst
the particles. If we denote the degree of freedom by N then each freedom is charac-
terized by a position and a momentum variable (conjugate variables). If we denote the
position and momentum for the j th degree of freedom by q j and p j ( j = 1, 2, . . . , N )
respectively then the system Hamiltonian depends on these N variables, that is,

H = H(p1, . . . , pN , q1, . . . , qN ) (1)

where we have assumed autonomy (that is, time independence) in the Hamiltonian.
The equations of motion can be written as follows in Hamilton formalism

ṗ j = − ∂ H

∂q j
, q̇ j = ∂ H

∂p j
, j = 1, 2, . . . , N (2)

which define a trajectory in the 2N dimensional phase space spanned by positions and
momenta when the beginning point of the trajectory is specified.

The autonomy donates the constancy to the Hamiltonian when the system moves
along a trajectory. In other words, the value of the Hamiltonian is conserved during
the system’s evolution. This happens only when the system under consideration does
not interact with the external agents. Otherwise the Hamiltonian becomes explicitly
dependent on time. Then the energy exchange occurs between the system and its envi-
ronment. Thus, only isolated systems can conserve their total energies. We will focus
only on the energy conserving systems here for simplicity.

Trajectory evaluations become unfeasible when the number of particles climbs up
to huge values like Avogadro’s number. Even rather smaller values like hundreds or
thousands may create technical problems. Hence, statistical methods can be consid-
ered for large values of N . To this end 2N dimensional phase space, which is spanned
by ps and qs, can be used to focus on not individual particles but their distribution
in this space. We define a phase space distribution function denoted by ρ(p, q, t)
such that its product with the hypervolume element of this 2N dimensional space,
dV = dp1 . . . dpN dq1 . . . dqN corresponds to the probability that the system’s posi-
tions and momenta lie in the hypervolume element dV = dp1 . . . dpN dq1 . . . dqN .
Since the total derivative of ρ in time should vanish (population should be constant as
long as no creation and annihilation occurs), the following equation must be satisfied

i
∂ρ (p, q, t)

∂t
= ̂Lρ (p, q, t) (3)

which is called Liouville equation for historical reasons. It is a first order partial dif-
ferential equation and uniquely defines the time evolution of the many particle system
under consideration when the initial probability distribution of the system is specified.
The operator ̂L appearing in this equation, is explicitly defined as follows

̂L ≡ −i
N

∑

j=1

[

∂ H

∂p j

∂

∂q j
− ∂ H

∂q j

∂

∂p j

]

(4)
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This particular structure gives a Hermitian nature to this operator as long as the Ham-
iltonian remains continuous throughout the integration domain which is generally an
entire phase space unless certain limitations are imposed on the domains of the state
variables.

The Hamiltonian of the system depends on 2N number of state variables, N number
of positions and N number of momenta so does the distribution function. Any function
of state variables can be averaged by using the above mentioned distribution function
over the entire phase space (or its certain subregion if there exist some restrictions).
These averaged values or in other words expected values depend on the expected
values of not only the state variables but also all their natural number Kronecker pow-
ers as long as the Hamiltonian can be expanded to a Taylor series. Hence it is quite
meaningful to attempt to construct ODEs for the expected values of the Kronecker
powers of the state variables. We do this here by following a route which is very
similar to the ones in the case of explicit ODE s and quantum mechanics of previous
two parts of this trilogy. For illustrative reasons we also try to solve the obtained set
of ODEs under given initial conditions for a system of particles interacting through
elastic forces (harmonic oscillators).

Paper is organised as follows. The second section covers the construction of the
so-called “Probabilistic Evolution Equations” while the third section recalls the con-
struction of truncation approximants and their convergence as it is done for the quantum
mechanical systems. The fourth section involves the solution of the probabilistic evo-
lution equations for a system of harmonic oscillators. The fifth section focuses on the
initial conditions together with certain properties of the system’s evolution. The sixth
section gives implementation just for illustration while the seventh section finalizes
the paper with concluding remarks.

2 Probabilistic evolution equations (PEEs)

In this section we take into consideration the system in its quite general form. If we
denote the degree of freedom of the system by nd then we can define the following
state vector

s ≡ [

p1 . . . pnd q1 . . . qnd

]T (5)

whose Kronecker square (Kronecker product with itself) is explicitly defined as

s⊗2 ≡ s ⊗ s ≡
[

p1sT . . . pnd sT q1sT . . . qnd sT
]T

(6)

which can be generalized to

s⊗m ≡ s ⊗ s⊗(m−1)

≡
[

p1s⊗(m−1)T
. . . pnd s⊗(m−1)T

q1s⊗(m−1)T
. . . qnd s⊗(m−1)T

]

m = 1, 2, 3, . . . (7)
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where the zeroth Kronecker power produces the universal scalar, just 1 (truely speaking
it is a single element vector), by definition.

Now the expected value of the mth Kronecker power of the state vector can be
given as follows

〈

s⊗m 〉

(t) ≡
∫

V
dVρ (p, q, t) s⊗m, m = 1, 2, 3, . . . (8)

where the integration domain V is generally whole phase space and the state variables
under integration does not temporally vary since they just play the role of dummy
variable of integration. The time differentiation of both sides in this equation gives

d
〈

s⊗m
〉

(t)

dt
=

∫

V
dV

∂ρ (p, q, t)

∂t
s⊗m,=

∫

V
dV

{−îLρ (p, q, t)
}

s⊗m

=
∫

V
dVρ (p, q, t)

{−îL
(

s⊗m)}

, m = 1, 2, 3, . . . (9)

where we have used the Liouville equation given in (3) and the Hermiticity of ̂L . The
first order homogeneous partial differential operator of ̂L enables us to use Leibnitz
rule for the evaluation of its action on a product composed of a finite number of factors
and therefore to obtain

̂L
(

s⊗m) =
m−1
∑

k=0

s⊗k ⊗ (

̂Ls
) ⊗ s⊗(m−k−1) (10)

which urges us to focus on the vector
(

̂Ls
)

. We can write

− îLs =
[ ∇q H

−∇p H

]

(11)

where ∇p and ∇q denote the gradients of the Hamiltonian with respect to the momen-
tum and position variables. The use of this result in (10) and therefore in (9) enables
us to get a much more explicit expression at the right hand side. We obtain

d
〈

s⊗m
〉

(t)

dt
=

〈

m−1
∑

k=0

s⊗k ⊗
[ ∇q H

−∇p H

]

⊗ s⊗(m−k−1)

〉

(t) (12)

which can be put into more amenable form by expanding the momentum and position
gradients of the Hamiltonian to Kronecker powers of the system vector. By doing so,
the right hand side of this equation can be expressed as an infinite linear combination
of the expected values of the system vector Kronecker powers. By gathering all equa-
tions obtained in this manner for all natural number values of m an infinite set of ODEs
is obtained. This set is first order and linear with a constant infinite matrix coefficient.
To explicitly show what really happens we can define the following expansion first
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− îLs =
[ ∇q H

−∇p H

]

≡
∞
∑

j=0

L j s⊗ j (13)

where the constant coefficient L j is a matrix of nd × n j
d . It is completely determined

by the system Hamiltonian. This definition enables us to rewrite (12) as follows

d
〈

s⊗m
〉

(t)

dt
=

〈

m−1
∑

k=0

s⊗k ⊗
⎡

⎣

∞
∑

j=0

L j s⊗ j

⎤

⎦ ⊗ s⊗(m−k−1)

〉

(t)

=
∞
∑

j=0

m−1
∑

k=0

〈

s⊗k ⊗
[

L j s⊗ j
]

⊗ s⊗(m−k−1)
〉

(t)

=
∞
∑

j=0

m−1
∑

k=0

(

I⊗k
nd

⊗ L j ⊗ I⊗(m−k−1)
nd

) 〈

s⊗(m+ j−1)
〉

(t)

=
∞
∑

j=m−1

m−1
∑

k=0

(

I⊗k
nd

⊗ L j−m+1 ⊗ I⊗(m−k−1)
nd

) 〈

s⊗ j
〉

(t)

(14)

which urges us to define the following block matrices

Em, j ≡
m−1
∑

k=0

I⊗k
nd

⊗ L j−m+1 ⊗ I⊗(m−k−1)
nd

, m, j = 0, 1, 2, . . . (15)

where Ind stands for the nd × nd type identity matrix. These block matrices vanish if
j is less than m − 1.

We can now rewrite (14) as follows

d
〈

s⊗m
〉

(t)

dt
=

∞
∑

j=0

Em, j

〈

s⊗ j
〉

(t), m = 0, 1, 2, . . . (16)

which urges us to define

ξ(t) ≡
⎡

⎢

⎣

〈s〉⊗0 (t)
...

〈s〉⊗ j (t)

⎤

⎥

⎦ , E ≡

⎡

⎢

⎢

⎢

⎢

⎣

E0,0 · · · E0, j · · ·
...

. . .
... · · ·

E j,0 · · · E j, j · · ·
...

...
...

. . .

⎤

⎥

⎥

⎥

⎥

⎦

(17)

and to get the following concise infinite vector equation instead of (16)

ξ̇(t) = Eξ(t). (18)
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This is an infinite linear and homogeneous vector ODE whose infinite coefficient
matrix is constant. We call E “Evolution Matrix” by following the same reasonings
in our previous works for explicit ODEs and quantum mechanics. As can be easily
noticed from above discussions, this matrix is in upper block Hessenberg form. Its each
block diagonal is generated from a separate coefficient of the Kronecker power series
of îLs. In this sense, the coefficients L0 and L1 play important roles. L0 generates
the blocks of the lower adjacent neighbor of the main diagonal. If it vanishes then the
Evolution Matrix becomes upper block triangular. This facilitates many analyses about
the Evolution Matrix, especially its spectral entities. L0 is a vector of nd elements and
it vanishes on the minima of the potential function as we mentioned above.

L1 is a square matrix of n2
d elements and generates all elements of the main diagonal

of Evolution Matrix. Hence, its spectrum determines the spectrum of the Evolution
Matrix when it is upper block triangular. We have investigated this issue in more detail
in the second part of this trilogy and therefore we do not repeat the same or very
similar things here. The only difference between the previous and present cases is the
structural differences in the coefficient matrices Hs and Ls.

Even though the triangularity facilitates many things very much the construction of
the truncation approximants and investigation of their convergence still remain rather
complicated. This comes from the nonsparse structure of the Evolution Matrix. Spar-
sity becomes very fruitful if it corresponds to diagonality which can be obtained in
very simple systems like the system of harmonic ocsillators only. These systems are
generally very well known although there may still be some gates open for investiga-
tion. Beyond diagonality the simplest sparse case appears when the Evolution Matrix
has only main block diagonal and adjacent block diagonal neighbor. We call these
cases “Conical” since they come from the descriptive functions which are multino-
mials with at most second degree. We have investigated the truncation approximants
and their convergence for this case in the first part of this trilogy. Hence we are not
willing to retrace the same route here.

3 Probabilistic evolution equations for a classical harmonic oscillator system

To get concreteness we need to specify the system and therefore the Hamiltonian. In
this work we focus on a system of quantum harmonic oscillators. We can explicitly
write the Hamiltonian for the system composed of N particles interacting through
elastic forces as follows

H ≡
N

∑

j=1

1

2m j

(

p2
3 j−2 + p2

3 j−1 + p2
3 j

)

+ V (q1, . . . , q3N ) (19)

where N stands for the number of the particles while parameters m j denote the masses
of the particles. The potential function V is specified as follows
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V (q1, . . . , q3N ) ≡ 1

2

N
∑

j,k=1
k> j

κ j,k

[

(

q3 j−2 − q3k−2
)2 + (

q3 j−1 − q3k−1
)2

+ (

q3 j − q3k
)2

]

= 1

2
qT (K ⊗ I3) q (20)

where κ j,ks are the elastic force constants while I3 and q denote the 3 × 3 identity
matrix and the 3N element position vector composed of qs, respectively. The matrix
K (we may call this symmetric matrix “Elasticity Matrix”) has the following general
diagonal and off-diagonal elements

K j, j ≡
j−1
∑

k=1

κk, j +
N

∑

k= j+1

κ j,k, j = 1, 2, . . . , N (21)

K j,k ≡ −κ j,k, 1 ≤ j < k ≤ N (22)

(20) reveals the quadratic form structure of the potential in the position variables. The
kinetic energy part of the Hamiltonian is also a quadratic form but not in positions,
instead in momenta. To show this we can define the mass matrix M whose general
term M j,k is given as

M j,k ≡ m jδ j,k, 1 ≤ j, k ≤ N (23)

where δ j,k stands for the Kronecker’s delta symbol. All these enable us to write

H ≡
N

∑

j=1

1

2
pT

(

M−1 ⊗ I3

)

p + 1

2
qT (K ⊗ I3) q

≡ sT HK s (24)

where

p ≡ [ p1 . . . p3N ]T

q ≡ [ q1 . . . q3N ]T

s ≡ [ p1 . . . p3N q1 . . . q3N ]T

HK ≡
[ 1

2

(

M−1 ⊗ I3
)

0
0 1

2 (K ⊗ I3)

]

. (25)

We call HK “The Hamiltonian Kernel Matrix”. It takes the responsibility of identifying
the system under consideration via mass and force constant parameters.
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Now we can write

∇p H =
(

M−1 ⊗ I3

)

p (26)

∇q H = (K ⊗ I3) q (27)

This urges us to define

S ≡
[

0 K ⊗ I3

−M−1 ⊗ I3 0

]

(28)

which is a very important entity we call “System Matrix”. (26), (27), and, (28) lead
us to write

[ ∇q H
−∇p H

]

= Ss (29)

This converts (12) to the following equation

d
〈

s⊗m
〉

(t)

dt
=

〈

m−1
∑

k=0

s⊗k ⊗ (Ss) ⊗ s⊗(m−k−1)

〉

(30)

where the use of the distributive property of matrix product over the Kronecker product
enables us to write

d
〈

s⊗m
〉

(t)

dt
= Sm

〈

s⊗m 〉

(t) (31)

where

Sm ≡
m−1
∑

k=0

I⊗k
6N ⊗ S ⊗ I⊗(m−k−1)

6N =
m−1
∑

k=0

Sm,k

Sm,k ≡ I⊗k
6N ⊗ S ⊗ I⊗(m−k−1)

6N , k = 0, 1, 2, . . . , m − 1 (32)

In these formulae I6N stands for the 6N × 6N identity matrix. A Kronecker power
of an identity matrix is also an identity matrix whose number of rows (or columns)
is equal to the product of the original identity matrix number of rows (or columns)
multiplied by the Kronecker power. Thus,

Sm,k = I6Nk ⊗ S ⊗ I6N (m−k−1), k = 0, 1, 2, . . . , m − 1 (33)

can be used for a concise result when it is necessary. However we will prefer to widely
use (32) because of its convenience in evaluations.

The formal explicit solution of (31) can be written as follows

〈

s⊗m 〉

(t) = etSm
〈

s⊗m 〉

(0) (34)
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which uniquely determines the expected value of the mth Kronecker power of the
system vector in time when this expected value’s initial value is specified. Since a
careful and simple analysis shows that Sm,k matrices are mutually commutative, one
can write

etSm =
m−1
∏

k=0

etSm,k (35)

and, as can be verified through powering and series expansion,

etSm,k = I⊗k
6N ⊗ etS ⊗ I⊗(m−k−1)

6N ,

(36)

it finally gives

etSm =
[

etS
]⊗m

(37)

and therefore

〈

s⊗m 〉

(t) =
[

etS
]⊗m 〈

s⊗m 〉

(0) (38)

As can be immediately noticed the system matrix S is the most fundamental compo-
nent of the probabilistic evolution. Hence its spectrum has also great significance on
the behaviour of the system under consideration. A rather simple but comprehensive
analysis shows that the entire spectrum of this matrix resides on the imaginary axis of
the complex eigenvalue plane under a symmetry with respect to the origin. This fea-
ture gives trigonometrically oscillating nature to the probabilistic evolutions for all m
values. Thus, the image of the initial value vector under the exponential of this matrix
multiplied by time, creates just oscillations without decaying or exploding when time
tends to go to infinity.

4 Focusing on the initial values

Let us define

〈s〉 (0) ≡ sin = [ a1 . . . a3N b1 . . . b3N ] . (39)

If the initial distribution were strictly sharply localized, that is, a product of certain
delta distributions then we would say that “There is no initial fluctuation”. In this case
we could write the fluctuation free expected value of the mth Kronecker power of the
system vector as follows

〈

s⊗m 〉

nof luc (t) =
[

etS
]⊗m

s⊗m
in =

[

etSsin

]⊗m
(40)
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which would be composed of just a single evolution through Kronecker powers.
Whereas, the real situation involves the initial distributions which are not charac-
terized by delta functions. Hence, the following formula becomes valid

〈

s⊗m 〉

(t) = 〈

s⊗m 〉

nof luc (t) +
[

etS
]⊗m [ 〈

s⊗m 〉

(0) − s⊗m
in

]

(41)

where the rightmost entity between the left and the right brackets describes the fluc-
tuation in the initial values. This fluctuation depends on the initial distribution. In this
work we will focus only on Gaussian wave packets where the initial distribution’s
function form is given as follows

ρ (p, q, 0) ≡
⎡

⎣

3N
∏

j=1

1
√

2πσp, j
e
− (p j −a j)

2

2σp, j

⎤

⎦ ×
⎡

⎣

3N
∏

j=1

1
√

2πσq, j
e
− (q j −b j)

2

2σq, j

⎤

⎦

(42)

which apparently produces (39) and, beyond that, the following simple fluctuation
equalities

〈

p2
j

〉

− 〈

p j
〉2 = σp, j ,

〈

q2
j

〉

− 〈

q j
〉2 = σq, j , j = 1, 2, . . . , 3N (43)

Even though much higher order fluctuations can be evaluated accordingly in terms
of the parameters as, bs, and σ s we will not attempt to deal with them here since it is
out of the scope of this work.

The distribution function’s initial form is normalized to produce 1 when it is inte-
grated over the whole phase space. Hence it corresponds to the percentage of being in
an infinitesimal hypervolume element located at the point characterized by its argu-
ments in the phase space. We can use a coordinate transformation over momentum
and position variables as follows to facilitate the analysis

p j = a j + √

2σp, j u p, j , q j = b j + √

2σq, j uq, j , j = 1, 2, . . . , 3N (44)

These affine transformations change the state vector as follows

s = sin + √
2Σu (45)

where Σ is a diagonal matrix composed of the square roots of the σ parameters in
the order of state variables while u stands for a vector whose elements are us ordered
accordingly.

The employment of (45) in the deviation term at the right hand side in (41) permits
us to write

〈

s⊗m 〉

(0) − s⊗m
in = √

2
m−1
∑

j=0

s⊗ j
in ⊗ (Σ 〈u〉) ⊗ s⊗(m− j−1)

in + · · · (46)
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where the remainder terms of the right hand side have more than one appearances of
the matrix �. As can be noticed easily the expected value of the vector u vanishes.
This urges us to rewrite (46) as

〈

s⊗m 〉

(0) − s⊗m
in =

	−1
∑

j=0

m−1
∑

k=0

s⊗ j
in ⊗

〈

(Σu) ⊗ s⊗k
in ⊗ (Σu)

〉

⊗ s⊗(m− j−k−2)
in + · · ·

(47)

where leading terms do not vanish now and they are proportional to the fluctuations.
The remainder terms having odd number of appearances of � at the right hand side
in (47) vanish because of the vanishing expected values of odd Kronecker powers of
u. Hence, the series expansion at the right hand side of this equality never contains
square roots of the fluctuations. We do not intend to explicitly focus on the remainder
terms here since this issue is rather a technicality.

The expected value of the mth Kronecker power of u contains terms proportional to
m! when m is even. This means that the 2mth terms of (47) at the right hand side very
rapidly grows when m tends to go to infinity. This makes the expansion in ascending
number of appearances of � divergent although a certain level of asymptoticity can
be used. So, even small fluctuations in state variable expected values may cause rapid
growth and therefore deviation from the fluctuation free case in the expected values of
the Kronecker powers of the state vector. We find this level of information sufficient
for our purposes here.

5 Numerical implementation

In this chapter, we organize an example to show the details of our new method numer-
ically. For this purpose, a computer program is written in MuPAD and is executed
within 10-digit precision to obtain the numerical results.

In the example, for simplicity, we use 2 particles and we compose the expected
value of the 0th Kronecker power of the state vector with the help of the Gauss wave
packets by using relation (42).

Relation (7) allows us to evaluate the mth Kronecker power of the state vector while
the expected value of the mth outer power of the state vector is evaluated through
relation (8).

Next step is to build the system matrix and elasticity matrix for defining the dynam-
ics of the system. Relations (21) and (28) are given for this purpose. Finally, the relation
(38) makes it possible to obtain the probabilistic evolution of the system by using the
system matrix and relations (35) and (37).

Figure 1 shows how the expected value of the initial state vector changes over time
with the help of function norm. Here, the red and blue curves represent the norm of
the function of the initial state vector’s expected value and the norm of the function
of the 2nd outer power of the state vector. Since we use norm procedure, it defines
overall change over time. The purpose here has been to show the mathematical fluc-
tuation effects on the evolution in a quite concise manner. Of course, much more
comprehensive scriptings can be used to this end even though we do not intend to do
so here.
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Fig. 1 Norm variations of the initial state vector and the second outer (Kronecker) power of the state vector

6 Conclusion

In this work we have focused on the expected values of the state vector Kronecker
powers to determine the probabilistic evolution of a system governed by the Liouville
equation. Even though the formulation is given at a quite general level by adrressing
to the first and second parts of this trilogy we have taken a system of particles inter-
acting via elastic forces. In other words, we have focused on a system of Harmonic
Oscillators. We have constructed the expected value evolutions for each Kronecker
power of the state vector separately. Then we have discussed on the fluctuations in the
initial values. We enumerate the concluding remarks below

1. The evolution ODE for the mth Kronecker power of the state vector involves only
this power due to the very particular structure of the harmonic oscillators. This
might not be the case for other types of systems. In more complicated systems
the ODE involving the temporal derivative of the mth Kronecker power of the
state vector may be equal to a sum over some or all possible Kronecker power
expected values of the state vector. This gathers the ODEs for all m values into a
single infinite vector ODE which is linear in the state vector expected values with
a constant infinite coefficient matrix.

2. The infinite vector ODE’s coefficient we call “Evolution Matrix” has an upper
blockwise Hessenberg form which can become blockwise triangular when certain
vanishing conditions are satisfied in certain Hamiltonian related entities. Triangu-
larity facilitates the analysis pretty much.

3. Even though we have not mentioned here the distribution function, for the system
of harmonic oscillators considered here it can be found if the initial distribution is
in Gaussian form. It is also in a Gaussian form. Depending on the fluctuations the
distribution may loose it sharpness. That is, the probability density may spread
out.

4. The asymptotic nature of the expansion in � signals out the invalidity of this
expansion and urges us to use some other type of expansion or we can use
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fluctuationlessness theorem to this end. Certain details of this issue have been
given in the first part of this trilogy.

5. The Gaussian form given here is rather restricted since it involves only the fluctu-
ations amongst the power expected values of each individual state variable sepa-
rately. We could use a more general quadratic form structure where the inverse of
the kernel matrix somehow corresponds to the fluctuations amongst all possible
interactions between the state variables.

6. The analysis here can be extended to some other cases where the initial conditions
may have much greater number of parameters which facilitate the controlling of
the fluctuations.

These and some other issues will be the core topics of our future works.
Some references which are related to the authors’ group works [1–9] and certain

ODE related resources [10–14], together with a computer algebra system tutorial [15],
are given in the references without any addressing in the text body since these papers’
organisation is self-consistent and self-containing.
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